Phylogenetic relationships of Pythium species based on ITS and 5.8 S sequences of the ribosomal DNA

Chieko Matsumoto ${ }^{11}$, Koji Kageyama ${ }^{17 *}$, Haruhisa Suga ${ }^{2)}$ and Mitsuro Hyakumachi ${ }^{11}$
${ }^{1)}$ Faculty of Agriculture, Gifu University, Gifu 501-1193, Japan
${ }^{2)}$ Molecular Genetic Research Center, Gifu University, Gifu 501-1193, Japan

Accepted for publication 28 April 1999

Abstract

The sequences of ITS regions in $\mathbf{3 0}$ species and two groups of the genus Pythium were resolved. In the phylogenetic trees, the species were generally divided into two clusters, referred to here as the F and S groups. The species in the two groups correspond in terms of their sporangial morphology, with the F group being filamentous/lobulate and the S group being spherical. Genetic divergence within the F group was lower than that within the \mathbf{S} group. Other morphological characteristics such as oogonial structure and sexual nature appeared to be unrelated to the groupings in these trees. An alignment analysis revealed common sequences to all the species and arrangements specific to each F or S group. It was found that the ITS region was a good target in designing species-specific primers for the identification and detection of Pythium species. In the tree based on 5.8 S rDNA sequences, oomycetes are distantly related to other fungi but separated from algae in Chromista.

Key Words_Chromista; internal transcribed spacer; phylogeny; Pythium; 5.8S rDNA.

Pythium is a large genus of the class Oomycetes including more than 80 species (van der Plaats-Niterink, 1981), some of which are important plant pathogens with worldwide distribution. The taxonomy of this genus is mainly based on the morphology of reproductive structures such as the oogonium, oospore, antheridium, and sporangium. Since Matthews (1931) and Sideris (1932) proposed the first keys for Pythium spp., several keys have been published as new species have been described. Researchers providing systematic taxonomy in the genus are Middleton (1943), Waterhouse (1967), and van der Plaats-Niterink (1981). Hendrix and Papa (1974) introduced the concept of 'species complexes' in relation to taxonomy of the genus Pythium. This is an arrangement in which the species of Pythium are lumped into 15 species groups based on their morphological characteristics. In the taxonomic keys for Pythium, the size of each structure and common morphological characteristics are taken as criteria, including: (1) the presence of sexual reproductive structures - homothallic or heterothallic; (2) the sporangial morphology-spherical, filamentous or lobulate; (3) the oogonial wall charactersmooth or ornamental; (4) the oospore character-plerotic or aplerotic; and (5) the antheridial charactermonoclinous or diclinous. However, each author regarded different characteristics as more important. For example, Middleton (1943) used the sporangial morphology at the first branch, whereas Waterhouse (1967) frequently utilized the reproductive structure size in the separa-

[^0]tion of species. Van der Plaats-Niterink (1981) regarded the presence of reproductive structures and the oogonial wall character as more important criteria. These differences in the interpretation of the taxonomic value of each character have resulted in a confusing taxonomic system for the Pythium species. It is therefore necessary to determine which morphological characteristic is the most phylogenetically important.

Recently, the use of molecular biological methods has become popular in determining the taxonomy of microorganisms, as these methods provide a great deal of information regarding the genetic background of species. In particular, comparative studies of the nucleotide sequences of ribosomal DNA (rDNA) genes provide a means of analyzing phylogenetic relationships over a wide range of taxonomic levels (Berbee et al., 1995; Okada et al., 1997; Cantrell and Hanlin, 1997; Ko et al., 1997). Coding regions consisting of large subunit rDNA (LrDNA), small subunit rDNA (SrDNA), and 5.8S rDNA evolve relatively slowly and are used for studying distantly related organisms from kingdoms to genera. Non-coding regions consisting of internal transcribed spacers (ITS) and intergenic spacers (IGS) evolve more rapidly and can be useful for comparisons at the species or population level. Furthermore, the development of the polymerase chain reaction (PCR) with universal oligonucleotide primers for fungi (White et al., 1990) has allowed the easy amplification and rapid analysis of these regions. In recent studies, the taxonomic placement of species in Aspergillus (Peterson, 1995) and Sarcoscypha (Harrington and Potter, 1997) and genera in Trichocomaceae (Berbee et al., 1995) have been reexamined based
on analyses of the sequences of coding regions and noncoding regions of nuclear rDNA. Nakasone (1996), and Norman and Egger (1996) have reported species that have common morphological characteristics but belong to different genera are phylogenetically closely related by rDNA analysis. In the genus Pythium, a correlation was found between groups of species defined by molecular data for 28 S rDNA and groups defined on the basis of their sporangial morphology (Briard et al., 1995). Wang and White (1997) confirmed this finding based on ITSRFLP. However, because length polymorphism is found in the ITS regions of the genus Pythium, making distinctions based on similar RFLP patterns is very difficult. It is, therefore, necessary to examine the sequences for a correct analysis of the ITS regions.

Oomycetes included in the genus Pythium have recently been separated from other fungi and repositioned in the Kingdom Chromista together with hyphochytrimycetes and labyrinthulomycetes, which were for many years believed to be true fungi (Cavalier-Smith, 1981, 1986). This kingdom is primarily defined by two ultrastructural features: the presence of tubular, tripartite hairs (mastigonemes) on the surface of the flagellum, and the presence of a chloroplast endoplasmic reticulum. The kingdom includes Cryptophyta, Haptophyta, and Heterokontophyta, to which Chrysophyceae, Raphidophyceae, Bacillariophyceae and some other algae belong. Oomycetes are characterized by the presence of tubular cristae in mitochondria, specific ultrastructural features of zoospores, the formation of oospores resulting from the touch of gametes, diploid vegetative hyphae, and constitutive elements of the cell wall. These characteristics are different from those of other fungi and therefore make oomycetes appear to be more closely related to algae than "true" fungi (Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes, Deuteromycetes). This new taxonomic system is supported by sequence analysis of the small subunit rRNAs (Gunderson et al., 1987; Förster et al., 1990), and it seems to reflect both physiological and biochemical characteristics (Cavalier-Smith, 1989).

In this study, we examined sequences of ITS regions including 5.8S rDNA to deal with three issues concerning Pythium taxonomy: (i) to clarify the relationship between sporangial morphology and phylogenetic evolution; (ii) to assess the potential of ITS regions in developing of species-specific PCR primers or DNA probes for use in identification and detection; (iii) to review the position of the oomycetes by sequence analysis of the 5.8 S rDNA coding regions with some algae and other fungi.

Materials and Methods

Isolates Thirty species and two groups of Pythium used in this study are listed in Table 1. All isolates were maintained on cornmeal agar (CMA) at $5^{\circ} \mathrm{C}$.
DNA extraction Three agar plugs were removed from the growing margin of $2-\mathrm{d}$-old cultures on CMA with a $1-\mathrm{cm}$ cork borer and transferred to a flask containing 50 ml of 20% V8-juice broth containing $2.5 \mathrm{~g} / \mathrm{CaCO} \mathrm{Ca}_{3}$.

After incubation for $4-7 \mathrm{~d}$ at $25^{\circ} \mathrm{C}$, mycelial mats were collected on filter paper, washed with sterile distilled water, and frozen at $-80^{\circ} \mathrm{C}$. The total genomic DNA was extracted according to the procedure of Lee and Taylor (1990). The frozen mycelia were ground to a fine powder with a pre-frozen mortar and pestle. Mycelial powder was suspended in 600μ l of lysis buffer (50 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5,50 \mathrm{mM}$ EDTA, 3\% SDS, 1% 2-mercaptoethanol) and heated at $65^{\circ} \mathrm{C}$ for 1 h . After centrifugation at $10,000 \mathrm{~g}$ for 5 min , the aqueous phase was withdrawn. One volume of aqueous phase was mixed with an equal volume of phenol/chloroform/ isoamyl alcohol (25:24:1, v/v/v), and after centrifugation $(10,000 \mathrm{~g}$ for 15 min$)$, the aqueous phase was withdrawn. The DNA was extracted again with an equal volume of phenol/chloroform/isoamyl alcohol (25:24:1, $\mathrm{v} / \mathrm{v} / \mathrm{v})$. DNA in the resulting solution was precipitated by adding 2 volumes of 99.9% ethanol in the presence of 3 M sodium acetic acid (0.1 vol.) and centrifuging at $10,000 \mathrm{~g}$ for 2 min . The precipitated DNA was rinsed with 70% ethanol, centrifuged at $10,000 \mathrm{~g}$ for 2 min , and after drying up, dissolved in TE buffer (10 mM Tris$\mathrm{HCl}, \mathrm{pH} 7.5$, and 0.1 mM EDTA).
Sequencing of rDNA-ITS region Primers ITS1 (5^{\prime}-GTAGTCATATGCTTGTCTC-3') and ITS4 (5^{\prime}-CTTCCGTCAATTCCTTTAAG-3'), which have been described by White et al. (1990), were used to amplify the nuclear rDNA region of internal transcribed spacers (ITS), including the 5.8 S gene. A total volume of $50 \mu \mathrm{l}$ of reaction mixture contained $1 \mu \mathrm{M}$ primers, 1.25 units of Taq DNA polymerase (Takara Shuzo Co. Ltd., Shiga, Japan), 0.2 mM dNTP mixture, $1 \times$ PCR buffer (10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.3,50 \mathrm{mM} \mathrm{KCl}, 1.5 \mathrm{mM} \mathrm{MgCl} \mathrm{I}_{2}$), and 200 ng of DNA template. The reaction was carried out with a DNA Thermal Cycler (Perkin-Elmer, Applied Biosystems, Norwalk, CT). The temperature cycling parameters were programmed for one cycle of 3 min at $94^{\circ} \mathrm{C}$, followed by 30 cycles of 1 min at $94^{\circ} \mathrm{C}, 1 \mathrm{~min}$ at $55^{\circ} \mathrm{C}, 2 \mathrm{~min}$ at $72^{\circ} \mathrm{C}$, and one cycle of 10 min at $72^{\circ} \mathrm{C}$. PCR products were electrophoresed in 1.2\% Agarose LO3 (Takara Shuzo) gel in TAE buffer (40 mM Tris-HCl, $\mathrm{pH} 7.5,19 \mathrm{mM}$ glacial acetic acid, 2 mM EDTA), and then stained with ethidium bromide. After amplification was confirmed, agarose gel containing the targeted bands was cut out. ITS regions were extracted from the agarose gel using TE-saturated phenol and phenol/ chloroform/isoamyl alcohol (25:24:1, v/v/v). A Big Dye ${ }^{\text {TM }}$ Terminater Cycle Sequencing Ready Reaction Kit (Perkin-Elmer) was used for the sequence reaction according to the manufacture's instructions. The reactions were carried out with a Gene Amp PCR system 2400 (Perkin-Elmer). Electrophoresis of the sequencing products was carried out with an ABI 377 DNA sequencer (Perkin-Elmer) or an ABI 310 DNA sequencer (Perkin-Elmer).
Phylogenetic analysis Except for Pythium spp., the sequence data were drawn from the EMBL databank. All sequences were first aligned using the multiple sequence alignment program CLUSTAL W ver. 1.60 (Thompson et al., 1994), and the alignment was optimized. Alignment

Table 1. Pythium species isolates used in this study.

Species	Isolate	Host	Origin	Accession no. ${ }^{\text {a }}$
P. aphanidermatum	TOc159	Carrot	Gifu, Japan	AJ233438
P. arrhenomanes	GUP6	Sugarcane	Kagoshima, Japan	AJ233439
P. catenulatum	MK4-10-2S	Zoysia grass	Gifu, Japan	Y18164
P. chamaehyphon	MS6-10-8V		Gifu, Japan	AJ233440
P. coloratum	TM321	Carrot	Gifu, Japan	AJ233441
P. deliense	MAFF305568	Pumpkin	Okinawa, Japan	AJ233442
P. dissotocum	MAFF305576		Chiba, Japan	AJ233443
P. graminicola	TMF	Sugar beet	Kagoshima, Japan	AJ233444
P. hydnosporum	MAFF305861		Fukuoka, Japan	AJ233445
P. inflatum	MAFF305863		Fukuoka, Japan	AJ233446
P. intermedium	MAFF305570		Hokkaido, Japan	AJ233447
P. irregulare	MAFF305572		Kanagawa, Japan	AJ233448
P. middletonii	MS2-10-8V	Zoysia grass	Gifu, Japan	AJ233449
P. myriotylum	BeAT1	Kidney bean	Hokkaido, Japan	AJ233450
P. nunn	ATCC20693			AJ233451
P. orthogonon	DS2-6-9D	Zoysia grass	Gifu, Japan	AJ233452
P. paroecandrum	CBS157.64		Australia	AJ233453
P. periilum	S2-8-1S	Zoysia grass	Gifu, Japan	AJ233454
P. periplocum	DK1-5-1S	Zoysia grass	Gifu, Japan	AJ233455
P. rostratum	DS5-7-1S	Bent grass	Gifu, Japan	AJ233456
P. spinosum	OD231	Carrot	Gifu, Japan	AJ233457
P. sulcatum	CTMa7	Carrot	Gifu, Japan	AJ233458
P. sylvaticum	OM121	Carrot	Gifu, Japan	AJ233459
P. torulosum	60-2	Zoysia grass	Hyogo, Japan	AJ233460
P. ultimum	Py 79	Sugar beet	Hokkaido, Japan	D86515
P. vanterpoolii	DK1-6-3D	Zoysia grass	Gifu, Japan	AJ233461
P. vexans	MAFF305905		Kochi, Japan	AJ233462
P. violae	OPY 6	Garden pansy	Hyogo, Japan	AJ233463
P. volutum	IFO31926			AJ233464
P. zingiberum	UOP389	Ginger	Wakayama, Japan	AJ233465
Group G	Py 37	Sugar beet	Hokkaido, Japan	Y 18165
Group HS	Py 55	Sugar beet	Hokkaido, Japan	AJ233466

a EMBL, GenBank and DDBJ Nucleotide Database.
gaps were treated as missing data and ambiguous positions were excluded from the analysis. Nucleotide variation of these sequences was analyzed by the maximumparsimony method of the Phylogenetic Analysis Using Parsimony (PAUP) program 3.1.1 (Swofford, 1993). The bootstrap analysis was implemented using 100 replicates of heuristic searches to determine the confidence levels of the inferred phylogenies (Felsenstein, 1988). In the analysis of the ITS regions, the sequence data of Achlya bisexualis (Accession no. L41389) and Phytophthora megasperma (Accession no. X75632) were used as an outgroup for comparisons.

Results

Pythium species

Sequence alignment The exact lengths of the ITS and 5.8 S rDNA regions were resolved by sequence analysis (Table 2). ITS 1 lengths varied from 171 bp to 303 bp ,
and ITS2 lengths varied from 393 bp to 520 bp . The length of the 5.8 S rDNA region was 159 bp in all of the Pythium species. The ITS regions including 5.8 S rDNA tended to be shorter in the species having filamentous and lobulate sporangial morphology (F group) and longer in those having spherical sporangial morphology (S group) (Table 2). More sequence variation was evident in the ITS1 regions, and dozens of gaps were interspersed mosaically in the F group. On the other hand, for the ITS2 regions, we could align most of the sequences other than P. nunn, P. vexans, and P. rostratum, which had peculiar sequences. The nucleotide sequence data have been registered in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the accession numbers shown in Table 1.

Genetic divergence In all the species used in this study, interspecific genetic divergence varied $0.0-29.0 \%$ with a mean distance of 11.4% in ITS1 and $0.0-29.1 \%$ with a

Table 2. Relationship of morphological characters (from van der Plaats-Niterink, 1981) with lengths of ITS region of Pythium.

Species	Sexual reproduction ${ }^{\text {a }}$	Oogonial wall ${ }^{\text {b }}$	Oospore ${ }^{\text {c }}$	Antheridia ${ }^{\text {d }}$	Sporangia ${ }^{\text {a }}$	Lengths (bp)			
						ITS1	5.8 S	ITS2	Total
P. hydnosporum	Ho	0	AP	M	-	189	159	417	765
P. periilum	Ho	5	P	MD	F	174	159	435	768
P. inflatum	Ho	S	P	D	F	172	159	440	771
P. deliense	Ho	S	A	M	F	173	159	441	773
P. sulcatum	Ho	S	A	MD	F	171	159	444	774
P. catenulatum	He	S	P	D	F	179	159	437	775
P. torulosum	Ho	S	P	M	F	179	159	437	775
P. aphanidermatum	Ho	S	A	MD	F	174	159	444	777
P. coloratum	Ho	S	A	MD	F	175	159	443	777
P. dissotocum	Ho	S	AP	MD	F	175	159	443	777
P. periplocum	Ho	0	A	D	F	191	159	428	778
P. myriotylum	Ho	S	A	D	F	175	159	445	779
P. zingiberum	Ho	S	A	D	F	175	159	445	779
P. chamaehyphon	Ho	S	A	D	S	240	159	393	792
P. arrhenomanes	Ho	S	P	D	F	187	159	450	796
P. graminicola	Ho	S	A	M	F	187	159	450	796
P. volutum	Ho	S	A	D	F	187	159	455	801
P. vanterpoolii	Ho	S	P	M	F	198	159	453	810
P. ultimum	Ho	S	A	M	(S)	221	159	445	825
Group HS	-	-	-	-	(S)	221	159	445	825
Group G	-	-	-	-	S	221	159	445	825
P. middletonii	Ho	S	P	MD	S	240	159	455	854
P. orthogonon	Ho	S	P	MD	S	240	159	456	855
P. intermedium	He	S	A	D	(S)	227	159	480	866
P. nunn	Ho	S	A	MD	(S)	196	159	519	874
P. vexans	Ho	S	A	M	S	222	159	494	875
P. sylvaticum	He	S	A	D	(S)	290	159	458	907
P. violae	Ho	S	A	M	-	288	159	469	916
P. spinosum	Ho	0	P	M	(S)	292	159	466	917
P. paroecandrum	Ho	S	A	M	S	294	159	478	931
P. irregulare	Ho	0	AP	MD	S	299	159	479	937
P. rostratum	Ho	S	P	M	S	303	159	520	982

[^1]Table 3. Averages and ranges of percent genetic divergence in ITS 1, the 5.8 r rDNA, and ITS2 from pairwise comparisons among F and S groups of Pythium.

	ITS1	$5.8 S$	ITS2	Entire region
Within F group $^{\mathrm{a}}$	3.6^{c}	1.1	1.5	1.8
Within S group				
	$(0.0-12.0)^{\mathrm{d}}$	$(0.0-2.5)$	$(0.0-5.6)$	$(0.0-5.7)$
Between F and S groups	11.4	1.1	15.7	8.9
	$(0.0-22.0)$	$(0.0-2.5)$	$(0.0-29.1)$	$(0.0-14.5)$
	16.1	2.4	14.5	10.2
	$(10.0-29.0)$	$(0.0-5.0)$	$(8.3-22.7)$	$(7.7-16.5)$

Genetic divergence (\%)=(number of substitution / total number of sequences) $\times 100$
a Included 16 filamentous/lobulate sporangial species.
b Included 14 spherical sporangial species.
c Average of percent genetic divergence.
d Range of percent genetic divergence.

 $\because T G T G C C T$
$-T_{G T G C T T}$

- TAGTGCTTC $-G T$
$-6 T 1$
TGTGACTGAGCTGGCGC
TGTGACTGAGGGTGTG
CGTGACTGAGCTGGTGT
-CGTGACGC-GTGCTGCGG
-GGTGACGC. GTGCTGCGGG
 GG $\ldots \ldots \ldots$
GG
GG

HS1-|-5.8S

[^2]

 AATGCGAATTGCAGAATCAGTGAGTCATCGAAATTTGAACGCACATTGCACTTTCGGGTTATGCCTGGAAGTATGCTTGTATCAGYGTCCGTACATCA AATGCGAATTGCAGAATTCAGTGAGTCATCGAAATTTTGAACGCACATTGCACTTTCGGGATATTCCTGGAAGTATGCTTGTATCAGTGTCCGTACATCA

 AATGCGAATTGCAGAATTCAGTGAGTCATCGAAATYTTGAACGCATATTGCACTYTCGGGTTATGCCTGGAAGTATGCCTGTATCAGTGTCCGTAAATCA
 AATGCGAATTGCAGAATCAGTGAGTCATCGAAATTTTGAACGCAYATTGCACTTCCGGGTTATGCCTGGAAGTATGYCTGTATCAGTGTCCGTAAATCA AATGCGAATTGGAGAATTGAGTGAGTGATCGAAATITTGAACGCATATTGCACTTTCGGGTTATGCCTGGAAGTATGJGTGTATCAGYGTGCGTACCTCA AATGCGAATYGCAGAATTCAGTGAGTCATCGAAATTTTGAACGCATATTGCACTTCCGGGTYATGCCTGGAAGTATGTCTGTATCAGTGTCCGTAAATCA

-GTGTCGC
GTGTCGC
GTGTCGT
GTYTCGC
-

 GGA-GGAGTGTGCGAT
GAAAT-GAAT

GGCGGTATGTFAGGCTTC
GGGGTAGTTAGGCTTC
GGCGGTATGTTAGGCTIC GGCGGTATGTTAGGCTTC
GGCGGTATGTTAGGCTTT
GGGGTATGTTAGGGTVGC GGCGGTATGTTAGGCTTC
GGGGGTATGTAGGCTTC
GGGGTATGTAGCTTC GGCGGTATGTTAGGCTTC
GGGGGATGTTAGGCTT GGCGGTATGTTAGGCTT
GGGGGTATGTAGGTT
GCGGTATGTJAGGCT GGCGGTATGTTAGGCTT
GCGGTATGTAGGCTT
GCGGTATGTTCGGCTT GGCGGTATGTTCGGCT
GGCGGTATGTTCGGCT CGTGGTATGTTAGG
CGTGGTATGTTAGG
CGTGGTAT CGTGGTATGTTAGGCTI
CGCGGTATGTAACCTC
CGCGGTATGTTAAGCTC CGCGGTATGTTGGGCTTC.
CGCGGTACGTTAGGCGTGOTGCGTTGCTHTGTTGCAAC CGGGGTACGTTAGGTGTGGTGCTGTTGC CGCGGTACGGTAGGTGTG
CGCGGATGTGGGCTHC
CGCGGTATGTTGGGCTIC $G G C G G$
$G G G G$
$G C G G$ GCGGTATGGTTGGCTMC.
GCGGATHTGCTTGTA-CTTGTACGAGTGAACAAT

Fig. 1. Aligned DNA sequences of the two internal transcribed spacers and 5.8 S rDNA. Asterisks designate the region included in the phylogenetic analysis. Sequence gaps are shown as dashes, and undetermined sequences are shown by N.
mean distance of 10.6% in ITS2. The mean distances were 4.1% in ITS1 and 1.7% in ITS2 within the F group, 9.8% in ITS1 and 13.5% in ITS2 within the S group, and 15.9% in ITS1 and 14.3% in ITS2 between the both groups (Table 3). Within the F group, specifically, the genetic divergence was lower than within the S group and between the S and F groups.

Phylogenetic analysis The data from 34 taxa including two outgroups provided 1092 aligned sites. Of these, 106 sites from ITS1, 153 sites from ITS2, and all 160
sites from 5.8 S were used for phylogenetic analysis (Fig. 1). The parsimony analysis of these characters produced one minimum length tree of 235 steps, with consistency index (CI) and retention index (RI) of 0.664 and 0.778 , respectively (Fig. 2). In this tree, most of the branches in the bootstrap consensus tree were determined by applying the 50% strict consensus. The F group and P. hydnosporum (Mont.) Schroter, which forms no sporangia, formed one cluster, while the S group and P. violae Chesters \& Hickman, which forms no sporangia, separated into six clusters.

Fig. 2. Consensus tree of Pythium species based on the combined ITS and 5.8S rDNA sequences. The consensus tree was generated from maximum parsimony analysis using the heuristic search algorithm of PAUP 3.1.1. Numbers of the branches indicate the bootstrap values resulting from 100 bootstrap replications.

Chromista

The sequences of the 5.8 S rDNA of the oomycetes, Pythium, Phytophthora, and Achlya were compared with sequences of other fungi and algae (Table 4). The parsimony analysis of 161 characters produced one minimum length tree of 199 steps, with Cl and RI of 0.493 and 0.470 , respectively (Fig. 3). In this tree, oomycetes were located in a different branch from other organisms, which were grouped in a common cluster. Fungi formed one group in this cluster, but Blastocladiella emersonii Cantino \& Hyatt of chytridiomycetes was not included.

Discussion

Waterhouse (1967) and van der Plaats-Niterink (1981) have regarded the presence of reproductive structures and the character of the oogonial wall as the most important criteria in the taxonomy of the genus Pythium. On the other hand, Middleton (1943) has used the sporangial morphology as the determining criterion at the first branch. Briard et al. (1995) and Wang and White (1997) reported a correlation between the groups based on partial sequences of 28S RNA or RFLP analysis of ITS regions and that based on the sporangial morphology. In this study, the relationship between the sequences of the ITS region and sporangial form was examined in detail.

In the phylogenetic trees, the F group clustered in one branch at the high bootstrap percentages, while the S group divided into six branches. That is, these clusters based on the sequences of the ITS regions did not match the morphological subgroups of oogonium used in the taxonomies of Waterhouse (1967) and van der PlaatsNiterink (1981) but were related to the morphology of the sporangium. Moreover, the occurrence of homothallic and heterothallic species is not considered to reflect genetic evolution. These results agree with the data of Chen (1992) and Briard et al. (1995) indicating heterothallism in Pythium evolved independently. In the same way, characteristics such as oospores being plerotic/ aplerotic or the antheridia being monoclinous/diclinous are not informative about evolutionary differentiation. Up to this point, our data support the theory set forth by Middleton (1943), Briard et al. (1995) and Wang and White (1997), which suggests that sporangial form should be considered to be the most important characteristic in the phylogenetic taxonomy of genus Pythium. Furthermore, it is interesting that the taxonomic importance of sporangial form has also been shown in Phytophthora species (Crawford et al., 1996; Cooke and Duncan, 1997), suggesting that this characteristic may also be indicative of genetic evolution in other genera.

The lengths of the ITS regions including 5.8 S rDNA were shorter in the F group ($765-810 \mathrm{bp}$) and longer in the S group ($792-982 \mathrm{bp}$). In addition, the divergence in length was low in the F group (35 bp) and very high in the

Table 4. Database accession number of the species used to compare the sequences of 5.8 S rDNA

Species	Accession no. ${ }^{\text {a }}$
Achlya bisexualis	L41389
Blastocladiella emersonii	X90410
Chlamydomonas cribrum	AF033281
Cladophora vagabunda	Z38134
Colletotrichum acutatum	X73810
Cortinarius traganus	AF037224
Entrophospora infrequens	U94713
Fusarium oxysporum	X94173
Glomus mosseae	U31996
Gonyaulax spinifera	AF051832
Gracilariopsis tenuifrons	U21246
Hyphochytrium catenoides	X80346
Lentinula edodes	U33080
Monilinia fructicola	AF010501
Nannochloropsis salina	Y07974
Ochromonas danica	Y07976
Pandorina morum	AF053682
Phytophthora megasperma	X75632
Puccinia recondita	L08702
Pyrodinium bahamense	AF051366
Sarcodiotheca gaudichaudii	U30369
Tribonema aequale	Y07978

[^3]

Fig. 3. Consensus tree showing the relationship of oomycetes and other eukaryotes based on the 5.8 S rDNA sequences. The consensus tree was generated from maximum parsimony analysis using the heuristic search algorithm of PAUP 3.1.1. Numbers of the branches indicate the bootstrap values resulting from 100 bootstrap replications.

S group (190 bp). In the sequences of the ITS regions, the F group also had less variation than the S group. An alignment analysis revealed common sequences in all the species and specific arrangements for each group. The group-specific sequences were scattered over the ITS regions and contributed to the divergence between the F and S groups. The divergence within each group mainly resulted from an insertion, deletion, and/or substitution in the specific sequences.

Comparison of our sequence data with published restriction maps of P. arrhenomanes Drechsler, P. graminicola Subramaniam, P. irregulare, P. spinosum, P. ultimum, and P. sy/vaticum (Chen, 1992; Chen et al., 1992a; Chen and Hoy, 1993) revealed that the sequences matched in most species except for some short fragments that cannot be detected by RFLP analysis. The possibility of intraspecific variation in P. graminicola exists, as the sequence of our isolate has one additional restriction site or lacks one restriction site for each enzyme in comparison with the published data. We also compared our sequences with the RFLP analysis reported by Wang and White (1997). This comparison revealed a close match in 18 of 24 species, when allowance was made for short fragments and differences in length that could not be detected by RFLP analysis. For the remaining 6 species, comparison of the lengths of the restriction fragments in detail suggested a few intraspecific variations in P. graminicola, P. sulcatum Pratt \& Mitchell, and P. volutum

Vanterpool \& Truscott because each difference included only one or two restriction sites. In P. rostratum, P. vexans, and P. violae, the restriction patterns were extremely different from those of our isolates, suggesting that the differences might go beyond intraspecific variation. Since these species have indistinct morphological characteristics, the isolates could be incorrectly identified. In the species whose morphological taxonomic criteria are indistinct, or in species that have similar morphology to others, DNA analysis such as RFLP or sequences of ITS regions as well as characterization of morphological structure is necessary for correct identification.

Biochemical and immunological analyses have also been applied to taxonomic as well as a morphologic study of the genus Pythium. Biochemical analyses of isozymes and soluble proteins have been reported to be useful to recognize morphologically distinct species, but not to differentiate morphologically similar species such as P. graminicola and P. arrhenomanes, P. aphanidermatum (Edson) Fitzp. and P. deliense Meurs, P. irregulare and P. spinosum, P. paroecandrum and P. ultimum (Chen et al., 1991; Chen et al., 1992b; White et al., 1994). In our study, the above species can be distinguished on the basis of an analysis of ITS sequences, even though they are closely related. Other species with similar morphology, P. coloratum Vaartaja and P. dissotocum Drechsler, and P. middletonii and P. orthogonon, have only one differentiating sequence in the ITS sequences. Concerning species without reproductive structures, group G has been reported to have the same RFLP pattern in its mt-DNA as P. ultimum (Huang et al., 1992). Group G has only one distinct sequence from P. ultimum in the ITS2 region. To summarize the above, species-specific variation was detected in both ITS 1 and ITS2 in most of Pythium species, although some species appear to have the same or very similar sequences. Therefore, ITS regions are useful for the development of species-specific PCR primers or DNA probes for use in identification and detection.

In P. myriotylum Drechsler and P. zingiberum Takahashi, the sequences match completely. The species have many common morphological characteristics and grow at the same rates. P. zingiberum was originally isolated in Japan from ginger (Zingiber officinale Rosc.; Takahashi, 1954). The morphology and growth rate of this species was compared with those of morphologically similar species such as P. graminicola, P. arrhenomanes, and P. aphanidermatum by the author and later researchers. Only one report compares P. zingiberum directly with P. myriotylum, stating that they differ in morphology and number of antheridia, and the characters and size of oogonia (Ichitani and Shinsu, 1980). Outside of Japan, P. zingiberum has only been reported in Korea. Every isolation of this species has been done from ginger or mioga (Zingiber mioga Rosc.), but it has been reported to be pathogenic to cucumber, tomato, spinach, and potato (Katsura and Tanioka, 1967). The results of this analysis suggest that P. myriotylum and P. zingiberum are related phylogenetically.

Oomycetes have been classified as true fungi in view
of the similarity of morphologic, nutritional, and ecological features. However, in addition to analyses of the physiological and biochemical characteristics of $00-$ mycetes, a recent sequence analysis of the 18 S rDNA has provided additional evidence that oomycetes should be repositioned in Kingdom Chromista (Cavalier-Smith, 1981, 1986, 1992). In this study, the phylogenetic analysis based on the sequences of the 5.8 S rDNA region confirmed that oomycetes are distantly related to other fungi, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes, and Deuteromycetes; but we were unable to demonstrate that oomycetes are closely related to particular algae, from which they differ in terms of their 18 S rDNA. In future, molecular and cytological research should be carried out that targets a common ancestor of oomycetes and alga in Chromista. In addition, it is necessary to define the logical group for "fungi" beyond the kingdom to avoid confusion regarding the use of this classification in the field of biology and plant pathology.
Acknowledgement-We would like to thank to Dr. Motoaki Tojo, Osaka Prefecture University, for providing the isolate of Pythium zingiberum.

Literature cited

Berbee, M. L., Yoshimura, A., Sugiyama, J. and Taylor, J. W. 1995. Is Penicillium monophyletic? An evaluation of phylogeny in the family Trichocomaceae from 18S, 5.8S and ITS ribosomal DNA sequence data. Mycologia 87: 210-222.
Briard, M., Dutertre, M., Rouxel, F. and Brygoo, Y. 1995. Ribosomal RNA sequence divergence within the Pythiaceae. Mycol. Res. 99: 1119-1127.
Cantrell, S. A., and Hanlin, R. T. 1997. Phylogenetic relationships in the family Hyaloscyphaceae inferred from sequences of ITS regions, 5.8 S ribosomal DNA and morphological characters. Mycologia 89: 745-755.
Cavalier-Smith, T. 1981. Eukaryote kingdoms: seven or nine? BioSystems 14: 461-481.
Cavalier-Smith, T. 1986. The kingdom Chromista: origin and systematics. In: "Progress in Phycological Research", vol. 4, (ed. by Round, F. E. and Chapman, D. J.), pp. 309347. Biopress Ltd.

Cavalier-Smith, T. 1989. The kingdom Chromista. In: "The Chromophyte Algae: Problems and Perspectives", (ed. by Green, J. G., Leadbeater, B. S. C. and Diver, W. L.), Systematics Association Special vol. 38, pp. 381-407. Clarendon Press, Oxford.
Chen, W. 1992. Restriction fragment length polymorphisms in enzymatically amplified ribosomal DNAs of three heterothallic Pythium species. Phytopathology 82: 1467-1472.
Chen, W., Hoy, J. W. and Schneider, R. W. 1991. Comparisons of soluble proteins and isozymes for seven Pythium species and applications of the biochemical data to Pythium systematics. Mycol. Res. 95: 548-555.
Chen, W., Hoy, J. W. and Schneider, R. W. 1992a. Speciesspecific polymorphisms in transcribed ribosomal DNA of five Pythium species. Exp. Mycol. 16: 22-34.
Chen, W., Schneider, R. W. and Hoy, J. W. 1992b. Taxonomic and phylogenetic analyses of ten Pythium species using isozyme polymorphisms. Phytopathology 82: 1234-1244.
Chen, W. and Hoy, J. W. 1993. Molecular and morphological
comparison of Pythium arrehenomanes and P. graminicola. Mycol. Res. 97: 1371-1378.
Cooke, D. E. L., and Duncan, J. M. 1997. Phylogenetic analysis of Phytophthora species based on ITS1 and ITS2 sequences of the ribosomal RNA gene repeat. Mycol. Res. 101: 667-677.
Crawford, A. R., Bassam, B. J., Drenth, A., Maclean, D. J. and Irwin, J. A. G. 1996. Evolutionary relationships among Phytophthora species deduced from rDNA sequence analysis. Mycol. Res. 100: 437-443.
Felsenstein, J. 1988. Phylogenies from molecular sequences: inference and reliability. Ann. Rev. Genetics 22: 521-565.
Förster, H., Coffey, M. D., Elwood, H. and Sogin, M. L. 1990. Sequence analysis of the small subunit ribosomal RNAs of three zoosporic fungi and implications for fungal evolution. Mycologia 82: 306-312.
Gunderson, J. H., Elwood, H., Ingold, A., Kindle, K. and Sogin, M. L. 1987. Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc. Natl. Acad. Sci. USA 84: 5823-5827.
Harrington, F. A. and Potter, D. 1997. Phylogenetic relationships within Sarcoscypha based upon nucleotide sequences of the internal transcribed spacer of nuclear ribosomal DNA. Mycologia 89: 258-267.
Hendrix. F. F. Jr. and Papa, K. E. 1974. Taxonomy and genetics of Pythium. Proc. Am. Phytopath. Soc. 1: 200-207.
Huang, H. C., Morrison, R. J., Muendel, H.-H., Barr, D. J. S., Klassen, G. R. and Buchko, J. 1992. Pythium sp. "group G", a form of Pythium ultimum causing damping-off of safflower. Can. J. Plant Pathol. 14: 229-232.
Ichitani, T. and Shinsu, T. 1980. Pythium zingiberum causing rhizome rot of ginger plant and its distribution. Ann. Phytopathol. Soc. Japan 46: 435-441. (In Japanese).
Katsura, K. and Tanioka, Y. 1967. Rhizome rot of Zingiber officinale Rosc. and Z. mioga Rosc. by Pythium species. Proc. Kansai PI. Prot. 9: 49-55. (In Japanese.)
Ko, K. S., Hong, S. G. and Jung, H. S. 1997. Phylogenetic analysis of Trichaptum based on nuclear 18S, 5.8S and ITS ribosomal DNA sequences. 1997. Mycologia 89: 727734.

Lee, S. B. and Taylor, J.W. 1990. Isolation of DNA from fungal mycelia and single spores. In: "PCR Protocols, A Guide to Methods and Applications", (ed. by Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J.), pp. 282287. Academic Press, New York.

Matthews, V.D. 1931. Studies on the genus Pythium. Chapel Hill, NC., U.S.A.: University of North Carolina Press, pp. 1-136.
Middleton, J. T. 1943. The taxonomy, host range and geographic distribution of the genus Pythium. Memoirs of the Torrey Botanical Club 20: 1-171.
Nakasone, K. K. 1996. Morphological and molecular studies on Auriculariopsis albomellea and Phlebia albida and a reassessment of A. ampla. Mycologia 88: 765-775.
Norman, J. E. and Egger, K. N. 1996. Phylogeny of the genus Plicaria and its relationship to Peziza inferred from ribosomal DNA sequence analysis. Mycologia 88: 986-995.
Okada, G., Takematsu, A. and Takamura, Y. 1997. Phylogenetic relationships of the hyphomycete genera Chaetopsina and Kionochaeta based on 18 S rDNA sequences. Mycoscience 38: 409-420.
Peterson, S. W. 1995. Phylogenetic analysis of Aspergillus sections Cremei and Wentii, based on ribosomal DNA sequences. Mycol. Res. 99: 1349-1355.
Sideris, C. P. 1932. Taxonomic studies in the family Pythia-
ceae. 2. Pythium. Mycologia 24: 14-61.
Swofford, D. L. 1993. PAUP, Phylogenetic analysis using parsimony, version 3.1.1. Computer program distributed by the Illinois Natural History Survey: Champaign, IL, U.S.A.
Takahashi, M. 1954. On the morphology and taxonomy of some species of the Pythium which cause crop diseases. Ann. Phytopathol. Soc. Japan 18: 113-118. (In Japanese.) Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
van der Plaats-Niterink, A. J. 1981. Monograph of the genus Pythium. Stud. Mycol. 21: 1-142.
Wang, P. H. and White, J. G. 1997. Molecular characterization
of Pythium species based on RFLP analysis of the internal transcribed spacer region of ribosomal DNA. Physiol. Molecul. Plant Path. 51: 129-143.
Waterhouse, G. M. 1967. Key to Pythium Pringsheim. Mycological Papers, Commonwealth Mycological Institute, Kew 109: 1-15.
White, J. G., Lyons, N. F., Wakeham, A. J., Mead, A. and Green, J.R. 1994. Serological profiling of the fungal genus Pythium. Physiol. Molecul. PI. Pathol. 44: 349-361.
White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: "PCR protocols, A Guide to Methods and Applications", (ed. by Innis, M. A., Gelfand, D.H., Sninsky, J. J. and White, T. J.l, pp. 315-322. Academic Press, San Diego, CA.

[^0]: * Corresponding author.

 E-mail: kageyama@cc.gifu-u.ac.jp

[^1]: a Ho: homothallic, He: heterothallic, -: reproductive structure not known.
 b S: smooth, O: ornamental, -: reproductive structure not known.
 c P: plerotic, A: aplerotic, -: reproductive structure not known.
 d M : monoclinous, D : diclinous, -: reproductive structure not known.
 e F: filamentous and lobulate, S: spherical and subspherical, (S): hyphal swelling, --: sporangia not known.

[^2]:

[^3]: ${ }^{\text {a }}$ EMBL, GenBank and DDBJ Nucleotide Database

